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I. INTRODUCTION

Reliable and accurate position information is important when locating mobile

wireless communication units. One major commercial factor behind the recent interest in

localization is the Federal Communications Commission (FCC) regulation [1] that

requires wireless communications systems to provide Enhanced-911 (E-9 11) service.

There are many other reasons where localization of wireless emitters is desirable or

essential.

Our main focus is the reduction in mean square error for the time difference of

arrival estimate, which in turn allows improved localization. Wavelet denoising, based on

the modified approximate maximum likelihood (MAML), the fourth order moment, or

their time varying adaptations, provides improvement.

A. POSITION LOCALIZATION SYSTEMS

A number of position localization systems have evolved over the years. Some of

these position localization systems are Global Positioning System (GPS), Loran C, and

Global Navigation Satellite System (GLONASS).

1. Global Positioning System (GPS)

GPS is the most popular radio navigation aid. GPS is also used to relay position of

cellular phones to public switched telephone networks (PSTN) or to public safety

answering points (PSAP). GPS obtains precise timing using a group of satellites that

transmit a spread spectrum L-band signal centered at 1575.42 MHz [23]. Calculation of

the distances to three different satellites, allows triangulation to determine the position of

the cellular phone.



2. Loran C

Loran C is a navigational tool that operates in the low frequency (90-110 kHz)

band and uses a pulsed hyperbolic system for triangulation. It has a repeatable accuracy

in the 19-90 meters range and is accurate to about 100 meters with 95 percent confidence

and 97 percent availability. Like GPS, its performance depends on local calibration and

topography. GPS has replaced Loran C in most applications [13].

3. Global Navigation Satellite System (GLONASS)

The Global Navigation Satellite System (GLONASS) is similar system to GPS.

GLONASS's synchronization time is 1/3 of GPS's, i.e., less than a minute [13].

B. METHODS FOR LOCATING CELLULAR PHONES

Localization techniques can be grouped into two categories. These are, position

localization systems that require a modification of the existing handsets, and systems that

require modification at the base stations. The second category consists of angle of arrival

(AOA), frequency difference of arrival (FDOA), time of arrival (TOA), or time

difference of arrival (TDOA) estimation of the wavefront at the receiving platforms.

1. Angle of Arrival (AOA)

A single platform may be sufficient for AOA localization of a wireless transmitter

on the surface of the earth. Once the angle is determined, the position of the emitter can

be obtained using the intersection of the centerline of the antenna beam, with the surface

of the earth. The signals to the antenna must be coming from the Line-Of-Sight (LOS)

direction. There is a considerable cost of installing antenna arrays and the method

requires a relatively complex AOA algorithm [3, 13].

2. Frequency Difference of Arrival (FDOA)
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FDOA measurements require at least two receiving platforms and a relative

velocity, sufficiently large so that the differential Doppler shift of the two received

signals is larger than the frequency measurement error.

3. Time of Arrival (TOA)

It may be possible for the base station to indirectly determine the time that the

signal takes from the source to the receiver on the forward or the reverse link. The total

time elapsed from the instant the command is transmitted to the instant the mobile

response is detected, is composed of the sum of the round trip signal delay and any

processing and response delay within the mobile unit. Due to the variations in design and

manufacture of the handsets the time estimate is difficult to obtain. This method is

susceptible to timing errors in the absence of LOS.

4. Time Difference of Arrival (TDOA)

The TDOA estimate is taken as the delay, which maximizes the cross-correlation

function between signals arriving at two base stations. This also determines at which base

station the signal arrives first. This information yields a hyperbolic localization curve. We

can localize the wireless transmitter by solving two hyperbolic curve equations.

It is necessary that the code generators at each receiver be synchronized to have a

common time base [2]. This form of localization is useful in asynchronous system since

time of transmission need not be known. To determine the location of a transmitter in two

dimensions, at least three receivers are required. If a major reflector effects the signal

components going to all the receivers, the timing error may get reduced in the time

difference operation.
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II. GLOBAL SYSTEM FOR MOBILE (GSM)

GSM is a second-generation cellular system standard that was developed to solve

the fragmentation problems of Europe's first cellular systems. GSM is the first cellular

system to specify digital modulation, network level architectures and services. Prior to

GSM it was not possible to use a given single subscriber unit throughout Europe. GSM

was originally developed to serve as the Pan-European cellular service and promised a

wide range of network service through the use of the Integrated Services Digital Network

(ISDN). GSM is now the world's most popular standard for cellular and personal

communications equipment.

A. GSM SYSTEM ARCHITECTURE

The GSM system architecture consists of three major interconnected subsystems

that interact with themselves and the users through network interfaces. The subsystems

are the Base Station Subsystem (BSS), Network and Switching Subsystem (NSS), and the

Operation Support Subsystem (OSS). The Mobile Station (MS) is also a subsystem, but is

usually considered to be part of the BSS for architectural purposes.

The BSS provides and manages radio transmission between the MS's and the

Mobile Switching Center (MSC). The BSS also manages the radio interface between the

MS's and all other subsystems of GSM.

The NSS manages the switching functions of the system and allows the MSC's to

communicate with other networks such as the Public Switched Telephone Network

(PSTN) and Integrated Services Digital Network (ISDN).
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The OSS supports the operation and the maintenance of GSM and allows system

engineers to monitor, diagnose, and troubleshoot all aspects of GSM. This subsystem

interacts with the other GSM subsystems.

1. GSM Signal Specifications

GSM utilizes two 25 MiiHz bands, which have been set aside for system use in all

member countries. The 890-915 MHz band is used for subscriber-to-base transmission

(reverse link), and the 935-960 MIHz band is used for base-to-subscriber transmission

(forward link). GSM uses Frequency Division Duplex (FDD) and a combination of Time

Division Multiple Access (TDMA) and Frequency Hopped Multiple Access (FHMA)

schemes to provide stations with simultaneous access to multiple users. The available

forward and reverse frequency bands are divided into 200 KHz channels. These channels

are identified by their Absolute Radio Frequency Channel Number (ARFCN). The

ARFCN denotes a forward and reverse channel pair, which is separated in frequency by

45 MHz. Each channel is time shared between as many as eight subscribers using

TDMA.

The radio transmissions on both forward and reverse link are made at a channel

data rate of 270.833 Kbps using binary 0.3 GMSK modulation. The bandwidth-bit

duration product, BT, has a level of 0.3. The signaling bit duration is 3.692 jts. User data

is sent a maximum rate of 24.7 Kbps. Each time slot (TS) has an equivalent time

allocation allowing for 156.25 channel bits. From this, 8.25 bits of guard time and 6 total

start and stop bits are used to prevent overlap with adjacent time slots. Each TS has a

time duration of 576.92 [is, while a single GSM TDMA frame spans 4.615 ms. The total
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number of available channels within a 25 MHz bandwidth is 125. Table 2.1 summarizes

the signal specifications [5].

Parameter Specifications
Reverse Channel Frequency 890-915 MHz
Forward Channel Frequency 935-960 MHz
ARFCN Number 0 to 124 and 975 to 1023
Tx/Rx Frequency Spacing 45 MHz
Tx/Rx Time Slot Spacing 3 Time slots
Modulation Data Rate 270.833333 Kbps
Frame Period 4.615 ms
Users per Frame (Full Rate) 8
Time Slot Period 576.9 jts
Bit Period 3.692 gs
Modulation 0.3 GMSK
ARFCN Channel Spacing 200 KHz
Interleaving (max delay) 40 ms
Voice Coder Bit Rate 13.4 Kbps.

Table 2.1: GSM signal specifications.

2. Gaussian Minimum Shift Keying (GMSK)

GMSK is a binary modulation scheme which may be viewed as a derivative of

Minimum Shift Keying (MSK). In GMSK, the sidelobe levels of the spectrum are reduced

by passing the modulating Non-return to zero (NRZ) data waveforms through a pre-

modulation Gaussian pulse-shaping filter [12]. Baseband Gaussian pulse shaping

smoothes the phase trajectory of the MSK signal and hence stabilizes the instantaneous

frequency variations over time. This reduces the sidelobe levels of the transmitted

spectrum.

3. GSM Channel Types

There are two types of GSM logical channels, called traffic channels (TCH) and

control channels (CCH). Traffic channels carry digitally encoded user speech or data and
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have identical functions and formats on the forward and reverse link. Control channels

carry signaling and synchronizing commands between the base and mobile station.

4. Frame Structure for GSM

There are eight time slots (TS) per GSM frame. The frame period is 4.615 ms. A

TS consists of 148 bits which are transmitted at rate of 270.833 Kbps (an unused guard

time of 8.25 bit period is provided at the end of each burst). Out of the total 148 bits per

TS, 114 are information bits, which are transmitted as two 57 bit sequences close to the

beginning and end of the burst. A 26 bit training sequence allows the adaptive equalizer

in the mobile or base station receiver to analyze the radio channel characteristics before

4.615 ms P-

Frame 0 1 2 3 4 5 6

576.92 ts -

Time slot 3 57 1 26 1 57 3 8.25

Tail Coded Stealing Training Stealing Coded Tail Guard
bit data flag sequence flag data bit period

Figure 2.1: GSM frame structure.

decoding the user data. Stealing flags on the both side of the training sequence are used to

distinguish whether the TS contains voice or control data.

B. TRANSMITTER/RECEIVER SYSTEM

In this section we will look at the GSM transmitter and receiver and simulate some GSM
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signals to be used for simulation purposes. The overall structure of the GSM

transmitter/receiver system is illustrated in Figure 2.2.

Transmitter

ACSpeech Channel MUX GMSK- RF-Tx
encoder encoder modulator

/interleaver

Receiver. .- . .............. . -...... ............ ..... . .......... ............... ....... ..... ......................................................... ............... . .................

DAC Speech Channel De- De- - RF'Rx

decoder decoder MUX modulator
/de-interleaver

Figure 2.2:Block diagram for the GSM transmitter/receiver system.

1. Transmitter Structure

The overall structure of the transmitter is illustrated in Figure 2.3. The transmitter

consists of four distinct functional blocks.

TRANING

Random Channel encoder __• M X _ GMSK-

Bit-generator /interleaver modulator

Figure 2.3: The overall structure of the transmitter.
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To simulate an input data stream to the channel encoder/interleaver, a sequence of

random data bits is generated. This sequence is accepted by the MIUX, which splits the

incoming sequence to form a GSM normal burst. The burst type requires that a training

sequence is supplied and included. Upon having generated the prescribed GSM normal

burst data structure, the MUJX sends this to the GMSK-modulator. The GMSK-modulator

block performs a differential encoding of the incoming burst to form a NRZ sequence.

This modified sequence is then subject to the actual GMSK-modulation after which, the

resulting signal is represented as a complex land Q baseband signal.

2. Receiver Structure

The general structure of the receiver is illustrated in Figure 2.4. The demodulator

accepts the GSM burst, r, using a complex baseband representation. Based on this data

sequence, knowing the oversampling rate OSR, the training sequence TRAINING, and

the desired length of the receiving filter, Lh, the demodulator determines a bit sequence.

This demodulated sequence is then used as the input to the demultiplexer (DeMUX)

where the actual data bits are obtained. The remaining control bits and the training

sequence are stripped off. Finally channel decoding and de-interleaving is performed.

OSR, TRAINING, Lh

r -- De- De- Channel decoder Decoded
modulator MUX /de-interleaver data

Figure 2.4: The overall structure of the receiver.
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II. WAVELETS

Transforms are used to obtain information that is not observable in the original

signal. The wavelet transform provides a time-scale representation [6]. There are other

transformation, which can give similar information, such as the short time Fourier

transform, the Wigner-Ville distribution, etc. This chapter will initially discuss Fourier

and then present wavelet analysis.

A. FOURIER ANALYSIS

Fourier analysis breaks a signal into its constituent sinusoidal components. One

can think of the Fourier analysis as a mathematical technique for transforming the signal

from a time-based to a frequency-based representation [7].

1. Fourier Series

Let gp (t) denote a periodic signal with period TO. By using the Fourier series

expansion, we can express the signal as a weighted sum of complex exponentials [8]:
00

gp(t) = CneJ2 nfot (3.1)

where fo = 1 / To and c, is given by

1 r / 2
en = 0 /2 gp(t)e-j2 =fotdt n=O,±_,±2,-.. (3.2)

2. Fourier Transform

The Fourier transform of a general continuous function g(t) is defined as [8]:

G(f) = fg(t)e-J2 ,tdt (3.3)
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G69 is a continuous function of the variablef The signal g(t) can be recovered by [8]:

g(t) = j G(f)e 2 .tdf" (3.4)

The functions g(t) and G69 are known as a Fourier transform pair.

Fourier analysis is extremely useful because the signal's frequency content is of

great importance, but in transforming to the frequency domain, time information is lost.

However, many signals contain non-stationary or transitory characteristics such as

trends, or abrupt changes. These characteristics can be the most important part of the

signal.

3. Short-Time Fourier Analysis

The short-time Fourier transforms (STFT) is an extension of the Fourier transform

designed to map the signal into the time-frequency plane. The STFT uses a sliding

window function w(t) to segment the data. The STFT is given by

S(r,f) = g(t)w*(t - r)e-j2fdt, (3.5)

where w* (t- -r) is the sliding window, * represents conjugation. The window function,

w(t), affects the characteristics of STFT. As a result of the uncertainty principle, the time

resolution (At), and the frequency resolution (Af) of a given signal are inversely related.

Their product has lower bound of 1/4;f, which is achieved by the Gaussian window [9].

This produces a trade-off in resolution of time and frequency. Since the choice of

window will fix (At) and (Af) for the entire time axis, the STFT partitions the time-

frequency plane into a uniform grid. The window can not provide good time resolution

and good frequency resolution simultaneously [22].

B. WAVELET ANALYSIS
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1. Introduction

A wavelet is an oscillatory function [10]. It has its energy concentrated in time,

which allows the analysis of transient, non-stationary, or time-varying phenomena.

2. The Continuous Time Wavelet Transform (CTWT)

The continuous time wavelet transform (CTWT) is defined as:

Q a) gt T' _ dtg (3.6)c.4,a _. (t a"

where T1(t) is the wavelet function, r is the translation in time, a denotes dilation or

compression in time, 1/,a normalizes the energy and * denotes conjugation.

The time and frequency resolution is controlled by the scale factor a. Low scales

correspond to high frequency wavelets and provide good time resolution. High scales

correspond to low frequency wavelets with poor time but good frequency resolution. The

time-frequency mapping of the STFT and CWT is shown in Figure 3.1.

The STFT produces a uniform grid with a constant time (At) and frequency resolution

(Af), while the CTWT has a time and frequency resolution that depends on the scale.

3. The Discrete Wavelet Transform (DWT)

Although the discretized continuous wavelet transform enables the computation of the

continuous wavelet transform by computers, it is not a true discrete transform [6]. As a

matter of fact, the wavelet coefficients are simply a sampled version of the CWT, and the

information it provides is highly redundant, as far as the reconstruction of the signal is

concerned. This redundancy, on the other hand, requires a significant amount of

computation time and resources.

The DWT provides sufficient information, and can offer a significant reduction in

12



Frequency Sc le

At

Af

Time Time

(a) STFT (b) Wavelet Analysis

Figure 3.1: (a) Frequency-Time plane for STFT, (b) Scale-Time plane for CWT.

the computation time. It is considerably easier to implement than the continuous wavelet

transform and obtained by restricting the scale and time parameters of the CWT to

discrete values. The DWT of a discrete signal g(n) is defined by

C(a, b) I g(n)*1 n-b (37)

where a, b, and n are the discrete versions of a, r, and t of Equation 3.6 respectively. The

scaling factor is further restricted to;

a=a0 , J=O,1,... log, (N). (3.8)

The choice of a will govern the accuracy of the signal reconstruction via the inverse

transform. It is popular to choose a =2, since it permits the implementation of fast

algorithms. Setting a = 2" produces octave bands called dyadic scales. As the scale level

is increased from J to J+1, the analysis wavelet is stretched in the time domain by a factor

13



of two. Hence the DWT output has better frequency resolution and less precise time

resolution as the scale number increases.

If the time shifting parameter b is restricted to k2", where k is an integer, this

version of the DWT is known as the decimated DWT and can be written as:

C(2jk2j) = : -g(n)T*(2-J n-k); (3.9)
n=1 V

where J =0, 1, 2,-.., log2(N), k = 1, 2,..., N2-J, and N is the length of the signal g(n).

The term k2 ' in the argument of DWT, indicates that C(a, b) is decimated by a factor of

two at each successive scale J retaining only the even points.

a. Subband Coding and Multiresolution Analysis

The time-scale (frequency) representation of the signal is obtained by

using digital filtering techniques. Filters of different cutoff frequencies are used to

analyze the signal at different scales. The signal is passed through a series of high pass

filters and low pass filters. Each one of the filter is followed by a two-to-one decimator.

The DWT analyzes the signal at different frequency bands with different

resolutions by decomposing the signal into a coarse and a detail component at each scale.

The DWT employs two sets of functions, a scaling (low pass) and a wavelet (high pass)

function. The decomposition of the signal into different frequency bands is obtained by

successive highpass and lowpass filtering of the signal followed by the decimation

* operation.

This decomposition halves the time resolution, since the output is

characterized by half the number of samples compared to the input signal. This operation

14



doubles the frequency resolution, since the frequency band of the signal now spans only

half the input frequency band. This procedure, known as subband coding, is repeated.

b. WAVELET ANALYSIS

Wavelet transforms are very efficient and effective in analyzing a wide class of

signals [10].

1. The wavelet transform allows a more accurate time description and

identification of signal characteristics. A wavelet coefficient represents a component that

is localized in time. The wavelet transform may allow a separation of components of a

signal that overlap in time or frequency.

2. Wavelets are adaptable and can be designed to fit individual applications.

The discrete wavelet transform is well suited to digital implementation.
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IV. TIME DIFFERENCE OF ARRIVAL (TDOA) ESTIMATION

TDOA can be employed to find the position of a GSM emitter. Figure 4.1 shows

a typical configuration; one emitter and a pair of receivers (discrete time).

emitter

Y y(n)

receiver 2

x(n)
receiver 1

Figure 4.1: One transmitter-two receiver configuration.

A. CORRELATION FUNCTION

Frequently we would like to know the association between two signals, that is,

how one signal is related to the other. Correlation of signals is often encountered in radar

and sonar processing, and digital communications.

Suppose that the signal at receiver one is denoted by x(n), while y(n) is a time

shifted version of x(n) at receiver 2. With additive noise, x(n) and y(n) can be modeled as:

x(n) = s(n) + n, (n) (4.1)
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y(n) =as(n-D)+n2(n) ,n=0, 1, ... , N-1 (4.2)

where s(n) is the unknown source signal, n, (n) and n2(n) are additive noise, D is the

difference in arrival times at the receivers, a is an attenuation coefficient, and N is the

number of samples in each snap shot received at the two receivers.

The most widely accepted method for obtaining TDOA (D in Equation 4.2) uses

the cross correlation method. Expectation of x(n) and y(n) leads to

R.Y(z) = E{x(n)y(n - -)}

= E{fas(n)s(n - D - -t')+ s(n)n2(n - z) +a s(n - D - r)n1 (n)+n1 (n)n 2(n - C)}.

Since the noise and signal are independent, and the noise has zero mean, the cross terms

of the expectation are zero. Also the noise is independently distributed, so the expectation

of n1(n) and n2(n - -) is also zero. The cross correlation of x(k) and y(k) becomes

RY (z-) = a R, (D + r) (4.3)

Figure 4.2 shows the circuit and the block diagram for the discrete time cross

correlator. The cross correlation approach requires that receivers share a precise time

reference. The performance of the TDOA estimates can be improved by increasing the

summation interval. Once the cross correlation function is computed, the value of v

which maximizes Equation 4.3 is used as the estimate of the TDOA. Figure 4.3 displays

the fast correlation method. A cross spectral density estimate is obtained in the frequency

domain, and the cross correlation estimate is obtained via an inverse Fourier transform.

B. SIMULATION

Two hundred simulations are used to evaluate the performance of the TDOA method.

The ith error is given by e1 =D-Di i=1,2,.., , (4.4)
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x(n)o 
R, ( )

delay a s(n - D)Adjustable

(D)) s(n-D)' AL"yV )0 delay n-r

ayn(n)ryn-")

a(a)

x~(a)

x~n) W[correlator R, • (I-)

y(n)

(b)

Figure 4.2: (a) Detail of the cross correlator (b) Block diagram for the cross correlator.

x(n) FFT X(o-)

Y• •FFT Y~o [Conjgt

Figure 4.3: Fast cross correlation method using fast Fourier transforms.

where N is the number of realizations. The mean square error (MSE) is given by

MSE = N lei 1 (4.5)
N i

where ei is the error for the i:h realization.
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V. WAVELET DENOISING

One important wavelet transform applications is noise reduction. The basic idea

of denoising is to retain the coefficients that preserve the signal while removing those that

represent noise. Two main properties of the wavelet transform assist in separating the

noise coefficients from the rest. The first one is that, by choosing the basis function to

match the signal, the resulting decompositions will contain relatively few coefficients.

The second one is that, for a Gaussian noise input, the transform coefficients will remain

Gaussian [18].

Wavelet shrinkage, introduced by Donoho and Johnstone [18-20], retains the

coefficients above a given level. It discards the ones below the given level. Denoising

consists of three steps.

1. Taking the wavelet transform of the input signal.

2. Selecting a threshold and suppressing the noisy coefficients by applying a

non-linear thresholding technique.

3. Performing the inverse wavelet transform using the modified coefficients.

A. THRESHOLD VALUES

The term threshold refers to a constant that is computed. It separates the

coefficients that are to be retained from those that are not. The noisy data can be written

as,

x(n)=s(n)+arn(n) n=0, 1, 2,..., N , (5.1)

where s(n) is the input signal to be recovered from the noisy data, n(n) is zero mean, unit

variance additive white Gaussian noise (AWGN), N is the length of the signal, a- is the
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standard deviation of the AWGN. Algorithms computing the threshold value T require

estimation of oa. Five methods of computing thresholds are described below.

1. Stein's Unbiased Risk Estimator (SURE) Threshold (Tsu)

This method of threshold calculation was proposed by Donoho and Johnstone

[20]. The thresholding is adaptive: A threshold level is assigned to each dyadic resolution

level by the principle of minimizing the Stein Unbiased Estimate of Risk (SURE) [21 ] for

threshold estimates. The SURE threshold is smoothness adaptive. If the unknown signal

contains jumps, the reconstruction does also. If the unknown signal has a smooth

segment, the reconstruction is as smooth as the mother wavelet will allow. This statistical

procedure calculates the estimated mean square error (risk) for a range of threshold

values, and selects Tsu with the resulting minimum risk.

2. Sqtwolog Threshold (Tq)

Sqtwolog threshold uses a fixed form threshold yielding minimax performance

multiplied by a small factor proportional to log(length(signal)) [7]

T= =-2log(length(signal)) (5.2)

3. Heursure Threshold (Th)

Heursure threshold is mixture of SURE and sqtwolog threshold methods [7].

4. Minimaxi Threshold (Tm)

Minimaxi threshold uses a fixed threshold chosen to yield mimimax performance

for mean square error against an ideal procedure [7]. The minimax principle is

used in statistics in order to design estimators. It is designed to select estimators

that minimize the worst case error occurring in the set.
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5. Wo-So-Ching Threshold (Tw,,,)

This threshold method was proposed by Wo, So, and Ching. It will be discussed

in detail in Chapter VI.

The threshold techniques, 1 through 4, are part of Donoho's method. Details are

discussed in Chapters VI and VII. At the low SNR levels Donoho's method did not

provide an improvement. Threshold technique 5 was used successfully and details are

discussed in Chapter VI and VII.

B. THRESHOLDING (SHRINKAGE)

Once a threshold value is established, a number of methods exist to apply the

threshold to suppress or modify the coefficients of the decomposition. We examined

three thresholding methods.

1. Hyperbolic Thresholding

Hyperbolic thresholding was proposed by Wong and will be discussed in detail in

Chapter VI.

2. Hard Thresholding

Hard thresholding can be described as the usual process of setting to zero the

elements whose absolute values are lower than the threshold [7]. For notational

convenience, we define x(n) and n(n) as vectors.

X=[x(O), x(1), x(2), ... , x(N-1)] T (5.3)
N =[n(0), n(1), n(2), ... , n(Y -1)]

Let W be NxN a wavelet transform matrix. In a vector form, the transformed output C is

related to the input vector X by C= W X , where

C=[c(j,i), j -1,0,1, -, J; i= 0,1,2,...,2j1 (5.4)
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and J = log 2 (N). The indices j and i represent the scale and the position in each scale,

while c(-1,0) denotes the remaining low-pass filtered coefficients.

The non-linear hard threshold is given by

e(i,jA={c(ij) ;for Ic(i,j)! > T
c 0 ; otherwise .

Hard thresholding of the transformed coefficients retains the coefficients that exceed the

threshold value, while all others are set to zero.

3. Soft Thresholding

Soft thresholding is an extension of hard thresholding. It zero sets the elements

whose absolute value is lower than the threshold, and shrinks the remaining coefficients

by the threshold value [7].

The non-linear soft thresholding is given by

S=sign(c(i,j))Gc(i,j)f - T] ; for Ic(ij)I > Ta(i,j) 0, oteis.(5.6)0o otherwise .

The advantage of this method is that the results are not as sensitive to the precise

value of the threshold T, as in the "keep or kill" strategy of the hard thresholding. The

disadvantage of this method is that the general shape of the signal is modified.

Thresholding method 2 and 3 are part of Donoho's method, which did not lead to

improvement. Thresholding method 1, hyperbolic thresholding, was used exclusive in

this work. Details can be found in Chapter VI and VII.
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VI. TDOA ESTIMATION

Seven wavelet based denoising methods are presented and evaluated. The

methods are denoising based on Donoho's method [7], denoising using the Wo-So-Ching

threshold. [15], denoising using hyperbolic shrinkage [16], denoising using median

filtering [14], a modified approximate maximum-likelihood delay estimation based in

part on [17], denoising based on the fourth order moment, and a time varying adaptation.

Figure 6.1 is a generic block diagram for all seven methods.

A. WAVELET DENOISING BASED ON DONOHO'S METHOD

Wavelet denoising, proposed by Donoho [7, 18-20], is discussed in Chapter V.

This method fails at low SNR's and some results are given in Chapter VII.

B. WAVELET DENOISING USING THE WO-SO-CHING THRESHOLD

Prior to cross correlation, each one of the sensor outputs is denoised according to

the Wo-So-Ching thresholding rule to increase the effective input SNR. Wavelet

denoising (WD) is applied to each received signal to recover the corresponding source

waveform. The restored signals are cross correlated. The TDOA estimate is given by the

argument at which the cross correlation function attains its maximum value.

We define the x(n), y(n), s(n), n, (n), and n. (n) sequences in vector form as

X = [x(0), x(l), x(2),-.., x(N -1)] T

Y =[y(0), y(l), y(2), ... , y(N-1)] T

S= [s(0), s(1), s(2), .. , s(N-1)] T (6.1)

N, =[n, (0), n,(1), n,(2), .- , n(N-12)] 3
N2 =[n2 (0), n2(1), n2(2), ... , n2(N -1)] r
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Y(n) 
W- Denoising 

IW T 
-D)

S 9(nDetector

Wavelet Denoising Correlator

Figure 6.1: System block diagram for TDOA estimate using wavelet denoising.

The start time "0" denotes the first data point in a given block of data. The transformed

output C is related to the input vector X by C= W X, . where W is a NxN orthonormal

wavelet transform matrix. C can be decomposed into C=Cs +Clk, where

Cs =[c,(j,i), j =-1,0,1,...,J; i = 0,1,2,...,2j-'] (6.2)

CNk =[c'k (j,i), j =-l,0,1,' ,J; i = 0,1,2,' ", 2 J-'] , (6.3)

are the wavelet transform coefficients of the source signal vector S and the noise vector

Nk (k=l, 2), respectively. The indices i and j represent the scale and the position in each

scale, respectively, while c, (-1,0) and cnk (-1,0) denote the low-pass filtered coefficients.

Note that, Cjvk is still a Gaussian vector. The main idea of the signal restoration

using wavelet denoising is to adapt each c(j, i) to make its value close to cs (j, i) so that

a good approximation of s(k) can be obtained after taking the inverse wavelet transform.
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The Wo-So-Ching threshold is derived according to the Neyman-Pearson

criterion as it is used in hypothesis testing [15]. This criterion is stated as follows:

Let c be a Gaussian random variable with known variance ,2 . Let a test be conducted

with the following hypotheses

Ho :E{c} = go (6.4)

and,

H: E{c} •/guo (6.5)

We will denote the acceptance of hypothesis H, and H, as Doand D,, respectively. The

type II error P(Do / HI) will be minimized for a given P(D, / Ho) when the threshold A is

selected as follows

c- 1o <:2A = .V2a-.erf -'(1 -a) , (6.6)

where

c is the Gaussian random variable with variance a 2 ,

,u0 is the expectation of c under hypothesis Ho,

A is the Wo-So-Ching threshold,

a is the type I error that is a= P(D /1Ho) and

erf(v)=2 Jet~dt (6.7)

This denoising method discards the individual elements in C. that are too small in

magnitude. The wavelet coefficient c(j, i) is regarded as totally due to noise if

jc(j, i)1:52 = -5c erf -'(1 - a) (6.8)

As a result, c, (j, i) will be modified and is given by
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, otherwise (6.9)

The denoising process is applied to both x(n) and y(n). The restored signals of s(n) are

denoted by 9(n) and a 9(n- D), respectively. The TDOA estimate is given by the

location of peak of the cross correlation function of modified x(n) and y(n) coefficients.

C. WAVELET DENOISING USING HYPERBOLIC SHRINKAGE

Denoising of signals corrupted by noise uses three steps; wavelet transform,

shrinkage, and inverse wavelet transform. Shrinkage reduces the value of each coefficient

in magnitude by an amount related to the threshold value. The amount of the shrinkage is

determined by the shrinkage method. In this section the hyperbolic method is used.

Hyperbolic shrinkage [16] is defined as:

601 A =sign [ci, j]c-(il j)2  A, Ic(i, iJ) > (6.10)
0 c(i,j) ; (61 A)

where c(ij) is the detail function of received signal, A is the Wo-So-Ching threshold

(see Equation 6.8), and ý(ij) is the modified detail function after shrinkage. The

coefficients are set to the square root of the difference of the squares of the values as long

as the absolute value of the coefficient is greater than the threshold. If the absolute value

of the coefficient is less than the threshold then the coefficient is set to zero. Hyperbolic

shrinkage can give good performance for a wide variety of signals. Other shrinkage

techniques may offer better performance for specific input signals and noise conditions.

D. WAVELET DENOISING USING THE MEDIAN FILTER

In this method, a median filter (filter length 3) is applied to the first detail function

of the wavelet transforms. The signals are reconstructed using the modified wavelet
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coefficients.

The median filter is a non-linear one dimensional filtering technique that applies a

sliding window to a sequence [14]. The median filter replaces the center point of the

window with the median value of all the points contained in the window. The length of

the window is very important. For example, for a stationary signal such as-a sinusoid, a

longer window length is better. But if the signal is a non-stationary, a short window

length is better. Using the median filter may have drawbacks if one does not have a priori

information about the source signal.

E. MODIFIED APPROXIMATE MAXIMUM-LIKELIHOOD DELAY

ESTIMATION

An approximate maximum likelihood (AML) algorithm was proposed by Y. T.

Chan, H. C. So, and P. C. Ching to estimate the TDOA of signals [17]. The general idea

of this method is to attenuate the frequency bands where the noise is strong and to

enhance the frequency bands where the signal is strong. To do this, we can use the pre-

filters as shown in Figure 6.2. The pre-filters HI (f) and H 2 (f) are chosen as follows

[17]

G,,(f)

SG,,, (f) G.2,2(f) (6.11)H, f)• f) G.,, (f ) +GSS (f)

G.,n, (f) Gnn. (f)

Here G, (f), G,,, (f), and G,2 n 2 (f) denote the auto-power spectra of s(k), n, (k) and

n2 (k) respectively. This choice of H1 (f)H2(f)is known as maximum likelihood (ML)

weighting. Multiplying the denominator and nominator in Equation 6.11 by

G ,n1 (f)G 2, 2 (f) and integrate the power spectral densities, we obtain the formula for the
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weight for each subband. This tends to enhance frequency bands where the signal is

strong.

The weights wd ,used as indicated in Figure 6.3, are given by

"2o-sd' L Z ,2-. J (.2
Wd - "2 "2 2 -2 2

0ndi n2di + 0sd7i (nld, + 07n2di

Since the noise density is flat and the filter gain of the wavelet transform is two,

the noise power will essentially remain same after passing through each high and low

pass filter. The noise power at each subband can be estimated using the formulas below

-,2 ^ , 2

o- =R (0)- - (6.13)

n_2 = R (0)- - (6.14)

^2o-s = arg max Ry (r) (6.15)

n, (n)

a s(n -D) Adjustable-•

L*delay s-D)yn)delay yn
sknDD y 2(f -n- )

n2 (n)

Figure 6.2: A generalized cross correlator.

,A2 ^2
O'nid, 07n, (6.16)
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c'2dT =_ 6..2 (6.17)
2 2

The variance -2, C 2 are the noise powers at each receiver, while C2 is the signal power
Th2arac r2 th osea.heiate h

at receiver, o-,d,', 0 n 2d, represent the noise powers at the it subband after the wavelet

transform. The signal power at each subband "i" can be estimated by

o0sd7 = .- d (k ) -- n,d ,i = 1, 2' ",J ; (6.18)

where N is the length of detail function di, and "i" denotes the scale.

The denoising procedure, shown in Figure 6.3, consists of the three steps. The

modified subband sequences are obtained by weighting each subband by

di = wd, di ; i = 1,2,-,J J (6.19)

The modified AML method is applied to both channels. The modified subband

sequences d', d', ,d' and a' are then combined to form the denoised signals.

F. WAVELET DENOISING BASED ON THE FOURTH ORDER MOMENT

1. White Noise

The correlation function for white noise is an impulse function. The samples of

white noise process are uncorrelated. The correlation function of white noise process

u[n] has the form

R,[n1,n0]=cro[n]6[n1-n 0 ] (6.20)

A white noise stationary process has a correlation function given by

Ru [t]=c'o [ t] (6.21)

and
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SU (ei- )=oC (6.22)

If u is a random vector of N consecutive samples from white Gaussian process,

the probability density function is given by

1 _ -If N- 1 (uJf= 2 - a_2 (6.23)
0 2 r=0172 e,(

The samples of a Gaussian white noise process are uncorrelated and hence independent.

a.

i LPF a 1  LPF

HPF HPF HPF

22 d2

- Wd, 
d 

Wd,

Figure 6.3: Block diagram for scaling of each subband.

2. Moments of the White Noise Process

The definitions of moments for a stationary random process are;

M•') =E{u[n]}=m, (6.24)
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M121[l, ]= E{u[n]u[n + lý ]}= R.[l,] (6.25)

MU3) [11 ,12]= E{u[n]u[n + l1 ]u[n + t2 ]} (6.26)

M(4)[11 ,l21l3 ]= E u[n ]u[n + I, ]u[n +l2 ]u[n + l3 } (6.27)

The first two moments are the mean and correlation function [11]. The fourth moment is

given by

)[115125,13]= E {u[n]u[n + l1 ]u[n +12]u[n + 13]}

=E{u[n]u[n + l1 ]}E{u[n + '2 ]u[n+/3 ] (6.28)
+ E{u[n]u[n +12]J}E{u[n + 1 ]u[n+13}6

+E{u[n]u[n + 13]}E{u[n + 1, ]u[n +12]}.

If /1 =12 =13 =0

M(4)[0,0,0] = 3o-4 (6.29)

3. The Wavelet Transform of White Noise

Since the wavelet transform is a linear operation, the Gaussian process remains

Gaussian after passing through low and high pass filters and hence preserves the high

order moments properties.

4. Fourth Order Moment of the Received Signal

The received signals are of the form

x(n) = s(n) + n1 (n) (6.30)

y(n)=as(n-D)+ n2(n) , (6.31)

where n, (n) and n2 (n) are statistically independent, zero mean Gaussian random

variables. The fourth order moment estimation of the received signal is given by,
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M(4' [0,0,0] = {4[t ]

MX~OOO ~=E x[n])

=E{[s[n] + n,[n] ]4}

=E{s4[n]}+ 4E{s3[n]nj[n] }+ 6E{s2 [n]n 2[n] (

+ 4E{s[n]n3[n] }+ E{n4[n]} (6.32)

>E{n4[n] }=3or-,

5. Mean and Standard Deviation of the Fourth Order Moment

Let z = M(4) , then the mean of the z becomes

N-1 14 N-1I 4 C

E{z}=l oE4}=- 3U"N =3 U (6.33)
N~ j=o N i=o

The second moment of z is given by,

E 1 J I-1 N-1

N" i=O j=i

1 N-1 N(N -1)(Z4 -. 4(.wi, i~U+.=N •iu (6.34)

+= N2\ J

- o5o: (N-1)go -

= + a (9N+ 96).
N N N

The variance of the z is given by,

2 =E{2I}-E2{z}

a: + 96)-9oa: (6.35)
N
96-8

N u-

If N is large, the variance of z is close to zero. We accounted for the variance in choosing

a threshold, see Equation 6.42. Experimentally, this amounted to a change from 3o4 to

3.1o-4
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6. Denoising

The fourth order moment of a detail function, which contains signal components,

should be greater than 3oa2, where O' denotes the noise power at subband di. Using

this property the wavelet coefficients which represent noise are eliminated and the ones

which represent the signal are retained.

The noise power is estimated using the formulas below

2 = argmax R,,(r) (6.36)

2 _ 2on2 = Rx(0)-crS (6.37)

a-2 =RyR (0). _ 2 (6.38)

The noise power after passing through the first high pass filter is given by

C 1d2 =G.a' /2 j=1,2 , (6.39)

where G is the gain of the high and low pass filters. If we generalize this formula, the

noise power of any detail function di is

G 2-
2 nio'n / - 2 j = 1,2 (6.40)

Assuming that the filter gain is 2 then

2n2 di =an2i j = 1, 2 (6.41)

Using the fourth order moment property each detail function, see Figure 6.3, can be

modified according to

d=;= ; otherwiseE (6.42)
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After modifying all detail functions, the inverse wavelet transform provides the denoised

signal.

F. TIME VARYING TECHNIQUE

The modified AML delay estimation method is based on the idea of attenuating

the spectral components where the signal is weak. This method works well if the subband

information is noise or signal only for the duration of the segment.

Since some signals are time varying or transient, the subbands can contain signal

only for only part of the segment. The method is modified allowing for time variations.

Each detail output is divided into two time blocks. The equations of section E are used on

each segment.

34



VII. SIGNAL DESCRIPTION AND SIMULATION RESULTS

A. SIGNAL DESCRIPTION

Two types of test signals were used; a set of generic signals and a base band

GSM signal. The signals are described in this section.

1. Generic Signals

The 13 bit Barker code sequence was used as the message to create four test

signals. The signal representing one code bit is of the form sin(2 * r* f * n / N) where

N=32, n=O, 1, ..., 31. Signals A, B, C, and D use a value of f of 1, 4, 8, and 12,

respectively. The generic signals are plotted in Figure 7.1.

(a) Test Signal A (b) Test Signal B
1 1

0.5 0.5

0 0

-0.5 0.5

-1 -1
0 200 400 600 0 200 400 600

(c) Test Signal C (d) Test Signal D
1 1

0.5 0.5

0 0

-0.5 -0.5

-1 -1
0 200 400 600 0 200 400 600

Figure 7.1: Generic signal (a) Signal A, (b) Signal B, (c) Signal C, (d) Signal D.
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.2. GSM Signal

According to the GSM signal properties, see Chapter II , a base band GSM

signal was simulated. The I and Q channel of the GSM base band signal are shown in

Figure 7.2. The MATLAB code for the GSM signal generation was adopted from [4].

(a) I channel

0.5

0

-0.5-

o0 10 200 300 400 500 600

(b) Q channel

0.5-

0-

-0.5

-1
0 100 200 300 400 500 600

Figure 7.2: (a) I channel of GSM signal (b) Q channel of GSM signal.

B. SIMULATION RESULTS

The mean square error (MSE), as defined in Equation 4.5, is used as the criteria of

goodness (i.e. low MSE denotes a small error and hence good localization). To quantify
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the global improvement, we compute the sum of the MSE's (i.e., total error) for each

method and compare it to the total error for the non-denoised TDOA estimate. The

improvement is given in per cent. The total error is obtained by summing the MSE over

the SNR's of interest (i.e., -3 to +5 dB).

1. Donoho's Method

As explained in Chapter V, Donoho proposed different types of thresholds and

thresholding techniques. His methods were evaluated on the generic signals. The mean

square error using wavelet denoising did not improve relative to the non-denoised version

for the SNR values of interest. The mean square error obtained from the correlation of

the raw signals is much smaller than when using Donoho's method. Hence Donoho's

method is not investigated any further.

2. Wavelet Denoising Using the Wo-So-Ching Threshold

a. Simulation Results for Generic Signals

Figure 7.3 (a) shows that there is an slight improvement in the mean

square error using Wo-So-Ching threshold method for generic signal A. As the carrier

frequency is increased (Figure 7.3 (b) and Figure 7.4), the mean square error also

increases. As long as the number of samples per binary bit is high there is an

improvement using this denoising method, but the advantage disappears as the carrier

frequency increases. The results are summarized in Table 7.1.

b. Simulation Results for the GSM Signals

Figure 7.5 shows that there is about a 28% improvement in the total mean

square error using Wo-So-Ching thresholding method for the GSM signal.
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SNR Xcorr Wo-So-Ching Xcorr Wo-So-Ching
(A) threshold (B) threshold

(A) (B)
5 0.385 0.25 0 0
4 0.415 0.275 0 0
3 0.485 0.425 0 0
2 0.715 0.535 0 0
1 0.795 0.78 0.32 0.32
0 0.805 0.725 0 0.96
-1 1.145 1.02 2.89 3.84
-2 1.62 1.34 4.505 6.49
-3 2.085 1.815 8.38 12.36

Table 7.1: (a) MSE versus SNR for with and without denoising using the Wo-So-Ching

threshold method for generic signal A and B.

SNR Xcorr Wo-So-Ching Xcorr Wo-So-Ching
(C) threshold (D) threshold

(C0 (D)
5 0 0 0 0
4 0 0.16 0 03 0 0.56 0 0
2 0.08 0.64 0 0
1 1.2 3.52 0 0
0 2.72 5.84 0.32 1.92
-1 3.52 8.56 1.6 5.12
-2 5.92 16.56 5.095 9.7
-3 8.88 28.08 5.665 15.62

Table 7.1: (b) MSE versus SNR for with and without denoising using the Wo-So-Ching

threshold method for generic signal C and D.
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0.8 I

0 o Xcorr without denoising

0.7x Wo-So-Ching threshold

0.6

2 0.5-0,5

0,4
a 0.4
Cr

0.3E

0.2

0.1

01
-4 -3 -2 -1 0 1 2 3 4 5

SNR

Figure 7.5: MSE versus SNR with and without denoising using the Wo-So-Ching

threshold method for the GSM signal.

3. Wavelet Denoising Using Hyperbolic Shrinkage

a. Simulation Results for Generic Signals

Figure 7.6 shows that there is an improvement in the mean square error

using hyperbolic shrinkage method for generic signal A and B. Again as the carrier

frequency is increased (Figure 7.8), the mean square error also increases. The results are

summarized in Table 7.2. Comparing Table 7.1 and Table 7.2, we can conclude that the

hyperbolic shrinkage method provides better result than the Wo-So-Ching threshold

method.
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b. Simulation Results for the GSM Signal

Figure 7.8 shows that there is about a 48 % improvement in the total

mean square error using Hyperbolic Shrinkage method for GSM signal. Comparing

Figure 7.5 and 7.8 we can conclude that hyperbolic shrinkage method provides better

result for the GSM signal than Wo-So-Ching thresholding method.

(a)
2
1.0 o Xcorrwithout denoising

1.5 x Hyperbolic Shrinkage

0,

0-3 -2 -1 0 1 2 3 4 5

(b)10

81 o Xcorr without denoisin! x Hyperbolic Shrinkag

a')

Cr

g4

E

-3 -2 -1 0 1 2 3 4 5
SNR

Figure 7.6: (a) MSE versus SNR with and without denoising using the Hyperbolic

Shrinkage method for generic signal A. (b) MSE for generic signal B.
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(b)
100.

00: Xcorr without denoising
80 x Hyperbolic Shrinkage

S60

0*
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Figure 7.7: (a) MSE versus SNR with and without denoising using the Hyperbolic

Shrinkage method for generic signal C. (b) MSE for generic signal D.

Xcorr Hyperbolic Xcorr Hyperbolic
SNR (A) shrinkage (B) shrinkage

(A) (]3)
5 0.375 0.2000 0 0
4 0.53 0.3200 0 0.08
3 0.52 0.4100 0 0.08
2 0.625 0.5400 0 0.16
1 0.96 0.7350 0.32 0.24
0 1.07 0.8200 0 1.12
-1 1.345 1.0050 2.89 2.8
-2 1.36 1.2100 4.505 3.6
-3 1.895 1.3300 8.38 7.84
-4 2.425 2.2400 12.025 10.465
-5 2.57 3.5350 38.24 17.185
-6 87.41 14.5850 268.01 190.41

Table 7.2: (a) MSE versus SNR for with and without denoising using Hyperbolic

shrinkage method for generic signals A and B.
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SNR Xcorr Hyperbolic Xcorr Hyperbolic
(C) shrinkage (D) shrinkage

(CL) (D)
5 0 0.1200 0 0
4 0 0.3200 0 0.24
3 0.08 0.4800 0 0.32
2 0.16 1.0000 0 1.76
1 1.04 2.0400 0 2.8
0 1.6 3.2200 0 4.015
-1 4.08 4.3800 1.645 7.625
-2 4.08 5.0800 0.96 12.735
-3 9.76 10.6450 8.76 87.35
-4 14.8 16.6750 15.385 29.055
-5 24.96 20.1500 22.97 680.8
-6 118.8 163.7250 57.635 1278.2

Table 7.2: (b) MSE versus SNR for with and without denoising using Hyperbolic

shrinkage method for generic signals C and D.
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Figure 7.8: MSE versus SNR with and without denoising using the Hyperbolic Shrinkage

method for the GSM signal.
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4. Wavelet Denoising Using the Median Filter

a. Simulation Results for Generic Signals

Figure 7.9 shows that there is an improvement in the mean square error

using median filtering on generic signals A and B. As the carrier frequency is increased

(Figure 7.10), the mean square error also increases. The results are summarized in Table

7.3. Comparing Table 7.1, 7.2 and 7.3 we can conclude that median filtering has the best

result for the generic signal B but for the other signals the Hyperbolic shrinkage method

provides better results.
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Figure 7.9: (a) MSE versus SNR with and without denoising using the median filtering

method for generic signal A. (b) MSE for generic signal B.
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Figure 7.10: (a) MSE versus SNR with and without denoising using the median filtering

method for generic signal C. (b) MSE for generic signal D.

Xcorr Median filtering Xcorr Median filteringSNR (A) (A) (B) (B

5 0.375 0.26 0 0
4 0.53 0.325 0 0
3 0.52 0.49 0 0
2 0.625 0.635 0 0
1 0.96 0.645 0.32 0
0 1.07 0.675 0 0.005
-1 1.345 0.865 2.89 0.005
-2 1.36 1.235 4.505 2.24
-3 1.895 1.81 8.38 2.895
-4 2.425 2.125 12.025 8.855
-5 2.57 2.855 38.24 19.965
-6 87.41 28.35 268.01 200.06

Table 7.3: (a) MSE versus SNR for with and without denoising using the median filtering

method for generic signals A and B.
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SNR Xcorr Median filtering Xcorr Median filtering
(C) (C ) (D) (D)

5 0 10.52 0 67.555
4 0 11.32 0 264.57
3 0.08 10.84 0 301.49
2 0.16 11.32 0 963.45
1 1.04 13.88 0 973.63
0 1.6 14.11 0 3251.7
-1 4.08 21.825 1.645 3593.1
-2 4.08 23.425 0.96 5698.7
-3 9.76 34.415 8.76 5088.8
-4 14.8 178.33 15.385 9083.3
-5 24.96 385.47 22.97 9397.2
-6 118.8 1217.5 57.635 9916

Table 7.3: (b) MSE versus SNR for with and without denoising using the median filtering

method for generic signals C and D.

b. Simulation Results for the GSM Signal

Figure 7.11 shows that there is about a 42% improvement in the total

mean square error using the median filtering method for the GSM signal. Comparing

Figure 7.5, 7.8 and 7.11 we can conclude that hyperbolic shrinkage method gives the best

result for the GSM signal.

5. Modified Approximate Maximum-Likelihood Delay Estimation

a. Simulation Results for Generic Test Signals

Figure 7.12 and 7.13 show that there is a significant improvement in the

mean square error for all generic signals when using the modified AML estimation

method. The results are summarized in Table 7.4. Comparing Table 7.1, 7.2, 7.3 and 7.4

we can conclude that the modified AML estimation method gives the best result.
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Figure 7.11: MSE versus SNR with and without denoising using the median filtering

method for the GSM signal.
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Figure 7.12: (a) MSE versus SNR with and without denoising using the modified AML

estimation method for generic signal A. (b) MSE for generic signal B.
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Figure 7.13: (a) MSE versus SNR with and without denoising using the modified AML

estimation method for generic signal C. (b) MSE for generic signal D.

Xcorr Modified AML Xcorr Modified AML
SNR (A) (A) B) ,(B),

5 0.375 0.07 0 0
4 0.53 0.085 0 0
3 0.52 0.17 0 0
2 0.625 0.185 0 0
1 0.96 0.275 0.32 0
0 1.07 0.305 0 0
-1 1.345 0.42 2.89 0.325
-2 1.36 0.54 4.505 2.255
-3 1.895 0.695 8.38 4.43
-4 2.425 0.815 12.025 7.995
-5 2.57 1.26 38.24 13.085
-6 87.41 1.635 268.01 61.795

Table 7.4: (a) MSE versus SNR for with and without denoising the modified AML

estimation method for generic signals A and B.
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Xcorr Modified AML Xcorr Modified AML
SNR (C) (C) (D) (D)

5 0 0 0 0
4 0 0 0 0
3 0.08 0 0 0

2 0.16 0.08 0 0
1 1.04 0.4 0 0
0 1.6 1.44 0 0
-1 4.08 2.96 1.645 0.125
-2 4.08 4.685 0.96 1.28
-3 9.76 7.525 8.76 2.925
-4 14.8 10.45 15.385 10.75
-5 24.96 20.395 22.97 13.35
-6 118.8 2670.8 57.635 208.15

Table 7.4: (b) MSE versus SNR for with and without denoising using the modified AML

estimation method for generic signals C and D.

b. Simulation Results for the GSM Signal

Figure 7.14 shows that there is about a 79% improvement in the total

mean square error using the modified AML estimation method relative to the undenoised

version. Comparing Figure 7.5, 7.8, 7.11 and 7.14 we can conclude that the modified

AML estimation method provides the best result for the GSM signal.

6. Wavelet Denoising Based on the Fourth Order Moment

a. Simulation Results for Generic Signals

Figure 7.15 and 7.16 show that there is a significant improvement in the

mean square error using wavelet denoising based on the fourth order moment method for

all generic signals. The results are summarized in Table 7.5. Comparing this method with

the other methods, we can conclude that wavelet denoising based on the fourth order

moment is the second best method.
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Figure 7.14: MSE versus SNR with and without denoising using the modified AML

estimation method for the GSM signal.
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Figure 7.15: (a) MSE versus SNR with and without denoising using the wavelet

denoising based on the fourth order moment method method for generic signal A. (b)

MSE for generic signal B.
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Figure 7.16: (a) MSE versus SNIR with and without denoising using the wavelet

denoising based on the fourth order moment method method for generic signal C. (b)

MSE for generic signal D.

fXcorr Fourth order Xcorr Fourth order

5 0.375 0.08 0 0
4 0.53 0.11 0 0
3 0.52 0.16 0 0
2 0.625 0.215 0 0
1 0.96 0.35 0.32 0
0 1.07 0.47 0 0.32
-1 1.345 0.58 2.89 0.64
-2 1.36 0.82 4.505 1.6
-3 1.895 0.92 8.38 4.73
-4 2.425 1.455 12.025 5.775
-5 2.57 1.625 38.24 10.58
-6 87.41 2.54 268.01 21.2

Table 7.5: (a) MSE versus SNR for with and without denoising wavelet denoising based

on the fourth order moment method for generic signals A and B.
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Xcorr Fourth order Xcorr Fourth order
SNR P () (D) (D)

5 0 0 0 0
4 0 0 0 0
3 0.08 0 0 0
2 0.16 0.24 0 0
1 1.04 0.72 0 0
0 1.6 1.12 0 0
-1 4.08 3.84 1.645 0.125
-2 4.08 5.52 0.96 1.92
-3 9.76 8.49 8.76 4.845
-4 14.8 12.375 15.385 12.19
-5 24.96 20.86 22.97 16.595
-6 118.8 26.99 57.635 24.85

Table 7.5: (b) MSE versus SNR for with and without denoising using wavelet denoising

based on the fourth order moment method for generic signals C and D.

b. Simulation Results for the GSM Signal

Figure 7.17 shows that there is about a 63% improvement in the mean

square error using wavelet denoising based on the fourth order moment method.

Comparing Figure 7.5, 7.8, 7.11, 7.14 and 7.17 we can conclude that wavelet denoising

based on the fourth order moment ranks second in performance for the GSM signal.

7. Time Varying Technique

As explained in Chapter VI, we can address signals that are non-stationary (i.e.,

the signal does not stay in a given frequency band for the length of the segment or has

modulation characteristics). In principle, in any given subband we try to find several

weights. This allows us to keep the information for the frequency band when the signal is

strong. Figure 7.18 allows a comparison of the modified AML method with the time

varying version in which the segments are partitioned into two parts for every scale. The

improvement in the total mean square error using the time varying modified AML
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method is about 81%. There is no drastic improvement relative to the modified AML, but

we believe that if the signal has a time varying property, the new method based on the

time varying technique will give better results.
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Figure 7.17: MSE versus SNR with and without denoising using the wavelet denoising

based on the fourth order moment method for the GSM signal.
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Figure 7.18: MSE versus SNR with and without denoising using the time varying

modified AML and modified AML technique on the GSM signal.
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VIII. CONCLUSION

A. Summary

The accuracy of algorithms to localize wireless communication units, was studied.

Chapter I reviewed the need to locate cellular transmitters and some of the existing

localization systems. The time difference of arrival (TDOA) method was used to locate

emitters. Estimation of the TDOA was based on the cross correlation function. To

increase the accuracy of the TDOA estimation, the noise in the received data was reduced

(denoising). The wavelet transform was employed to minimize the noise. Several

denoising methods were examined.

The MSE for all methods for the GSM signal is plotted in Figure 8.1. The

modified AML delay estimation method provided the best result, wavelet denoising using

the fourth order moment method ranks second. All methods provide better results than

the correlation of the raw time domain signals. The time varying technique outperform

the modified AML method for SNR values greater or equal to -2 dB. We believe that if

the signal has time varying properties, the time varying adaptation will be the superior

method.

For the GSM signal the probability of no-error is plotted in Figure 8.2 and 8.3.

The Wo-So-Ching, the hyperbolic shrinkage and the median filtering techniques, see

Figure 8.2, provide worse results than the direct correlation of the raw time domain

signals. In these techniques, a threshold value was calculated and then according to the

threshold, each coefficient was modified. These three techniques can modify the

coefficients, which represent the signal in the subband. Hence we reduced the mean
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square error by using these three techniques but we also decreased the probability of no-

error.

The modified AML, the fourth order moment and the time varying AML

techniques, see Figure 8.3, provide better results than the direct correlation of the raw

time domain signals. These techniques keep the subbands or portions of it, which

represent the signal. The subband, which represents noise only, is eliminated. The time

varying AML method produces the highest probability of no-error.
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Figure 8.1: Plot of all denoising methods for the GSM signal.
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Figure 8.2: Plot of the probability of no-error for the Wo-So-Ching threshold, Hyperbolic

Shrinkage and Median filtering techniques.

B. Recommendations

1. The work was done exclusively using a base band GSM signal. A follow

on study should address GSM signals at the IF or RF level, to assess potential

improvement of the MSE and hence in localization.

2. White Gaussian noise was used in the simulations. The effects of fading

signals should be included in a follow on study.
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Figure 8.3: Plot of the probability of no-error for the Time varying AML, Fourth order

moment and Median filtering techniques.
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